元启发算法

元启发算法(英文:metaheuristic), 又称 万能启发式算法、万用启发式算法。在计算机科学和数学优化中,元启发是一种高级的程序或启发式算法,专门用于搜索、生成或选取一个启发式结果(局部搜索算法),该结果可以为一个最优化问题提供足够好的求解,尤其适用于信息不完备或者计算能力受限时的最优化问题。

特色

元启发算法(metaheuristic),meta 代表其比一般启发式算法在搜寻能力上更为高阶。而 heuristic 则代表其算法能够在一个合理的计算成本内找到一个接近真实最佳解的解,但启发式算法并不能够保证其解的可行性与最佳性。 式通常是使用大量的试误以在庞大的解空间中搜寻最佳解。

元启发算法皆在全域搜索与区域搜索中取得权衡,若算法着重区域搜索能力则容易落入区域最佳解陷阱,若着重全域搜索则可能无法收敛解。

算法

  • 模拟退火法 (Simulated annealing algorithm, SA)
  • 社会认知算法 (Social cognitive optimization, SCO)
  • 简化群体算法 (Simplified swarm optimizatiom, SSO)
  • 调和搜寻算法 (Harmony search, HS)
  • 水循环算法 (Water cycle algorithm, WCA)
  • 汽车跟踪最佳化算法 (Car tracking optimization algorithm)

仿生元启发式算法

该类型算法以生物的习性或群体生物行为作为灵感加以发展成为算法。

  • 基因算法 (Genetic algorithm, GA)
  • 粒子群算法 (Particle swarm optimization, PSO)
  • 蚁群算法 (Ant colony optimization, ACO)
  • 布谷鸟搜索算法 (Cuckoo Search, CS)
  • 蝙蝠算法 (Bat algorithm, BA)
  • 萤火虫算法 (Firefly algorithm, FA)
  • 猴群算法 (Monkey algorithm)
  • 狮子算法 (Lion optimization algorithm, LOA)
  • 人工蜂群算法 (Artificial bee colony, ABC)
  • 病毒最佳化算法 (Virus Optimization Algorithm, VOA)
  • 飞蛾搜寻算法 (Moth search algorithm)
  • 鲨鱼气味算法 (Shark smell optimization, SSO)
  • 蚯蚓最佳化算法 (Earthworm optimization algorithm, EWA)
  • 帝王企鹅算法 (Emperor Penguins Colony, EPC)
  • 抹香鲸算法 (Sperm whale algorithm,SWA)
  • 人类精神搜索 (Human mental search, HMS)
  • 海洋掠食者算法 (Marine Predators Algorithm, MPA)
  • 狩猎搜索 (Hunting search, HuS)
  • 迁徙鸟类最佳化 (Migrating birds optimization, MBO)

原文地址:
https://zh.wikipedia.org/wiki/%E5%85%83%E5%90%AF%E5%8F%91%E7%AE%97%E6%B3%95

知识共享 署名-相同方式共享 3.0协议之条款下提供

文章作者: 张拓
文章链接: http://www.xssl.online/%e5%85%83%e5%90%af%e5%8f%91%e7%ae%97%e6%b3%95/
版权声明: 本博客所有文章除特别声明外,均采用CC BY-NC-SA 4.0 许可协议。转载请注明来自 张拓的博客
浏览次数: 532

张拓

陕西西安蓝田张拓QQ1070410059。一生所求不过“心安”二字。 然,尘世多纷扰。

发表回复